Bibliography
A B C D E F G H CH I J K L M N O P R S T U V W X Y Z
A
Abdul-Rahman, H., Wang, Ch., 2010. Limitations in current day lighting related solar concentration devices: a critical review. International Journal of the Physical Sciences, vol. 5, no. 18, p. 2730-2756.
Aguiar, R., Collares-Pereira, M., 1992. Tag: a time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation. Solar Energy, vol. 49, no. 3, p. 167-174.
Aizenberg, J., 1997. Principal new hollow light guide system "Heliobus" for daylighting and artificial lighting of central zones of multi storey buildings. Right Light, vol. 2, no. 4, p. 239-243.
Aizenberg, J.B., 2001. Historie vývoje a užití dutých světlovodů (History of the development and use of hollow light guides). 1. část (part 1), Světlo, vol. 4, no. 1, p. 8-10, 2. část (part 2), Světlo, vol. 4, no. 2, p. 6-9, http://www.odbornecasopisy.cz/index.php?id_document=22873 . (in Czech).
Aizenberg, J.B., 2003. Integral lighting systems for rooms with insufficient daylight. Light and Engineering, vol. 11, no. 1, p. 86-92.
Aizenberg, J.B., 2009. Holow light guides. Moskva: Znack.
Aizenberg, J.B., 2010. Outcome of research, developments, production and application of extended hollow light guides (1964-2009). Proc. of the CIE 2010 "Lighting Quality and Energy Efficiency", CIE x035, Vienna: CIE Central Bureau, p. 332-335.
Aizenberg, J.B., Bukhman, G.B., Pyatigorsky, V., Korobko, A., 1992. Development and application of light pipes. Present and future. Proc. of IESNA Conf.
Aizenberg, J., Bukhman, G., Korobko, A., Pyatygorsky, V., 2003. Experience and perspective of hollow light guides - lighting systems development and application. Proc. of the 25th Session of the CIE, San Diego, vol. 1, p. D3-64-D3-67.
Allen, T., 1997. Conventional tubular skylights: an evaluation of the daylighting systems at two ACT commercial buildings. Proc. of the 22nd National Passive Solar Conf., Washington DC, p. 97-129.
Al-Marwaee, M., Carter, D., 2006. Tubular guidance systems for daylight: Achieved and predicted installation performances. Applied Energy, vol. 83, no. 7, p. 774–788.
Al-Marwaee, M., Carter, D., 2009. User attitudes toward tubular daylight guidance systems. Lighting Research and Technology, vol. 41, no. 1, p. 71-85.
B
Barnard, J.C., Long, C.N., 2003. A simple empirical equation to calculate cloud optical thickness from shortwave broadband measurements. Proc. of Thirteenth ARM Science Team Meeting, Broomfield, Colorado.
Baroncini, C., Boccia, O., Chella, F., Zazzini, P., 2009. Double light pipe: experimental analysis on reduced scale models and comparison with numerical results. Proc. 11th European Lighting Conf., Istanbul, p. 1041-1048.
Baroncini, C., Boccia, O., Chella, F., Zazzini, P., 2010. Experimental analysis on a 1:2 scale model of the double light pipe, an innovative technological device for daylight transmission. Solar Energy, vol. 84, no. 2, p. 296–307.
Baroncini, C., Chella, F., Zazzini, P., 2006. Experimental analysis of tubular light pipes performances: influence of the diffuser on inside distribution of light. Proc. 5th Int. Conf. on Sustainable Energy Technologies SET 2006, Vicenza, p. 219-223.
Baroncini, C., Chella, F., Zazzini, P., 2008. Numerical and experimental analysis of the "Double Light Pipe", a new system for daylight distribution in interior spaces. International Journal of Low Carbon Technologies, vol. 3, no. 2, p. 110-125.
Beltran, L.O., Lee, E.S., Selkowitz, S.E., 1997. Advanced optical daylighting systems: light shelves and light pipes. Journal of the Illuminating Engineering Society, vol. 26, no. 2, p. 91-106.
Bielek, B., Bielek, M., 2001. Test reference year modification for design of double transparent Facade of the Slovak National Bank building. Proc. Int. Conf. Sustainable Building and Solar Energy, Brno: TCAS CR, p. 56-59.
Blondel, A., 1896. Raport sur les unités photométriques. Proc. Congrés International des Electriciens, Genéve.
Boland, J., 1995. Time-series analysis of climatic variables. Solar Energy, vol. 55, no. 8, p. 377-388.
Bouguer, P., 1760. Traité d´Optique sur la gradation de la lumiére (Optical tract on the gradation of light). Paris. Ruský preklad (Russian translation) N.A. Tolstogo, P.P. Feofilova: Optičeskij traktat o gradacii sveta, Moskva: Izd. AN ZSSR, 1950.
Bouchet, B., Fontoynont, M., 1996. Day-lighting of underground spaces: design rules. Energy and Buildings, vol. 23, p. 293-298.
Bracale, G., Mongozzi, A., Bottiglioni, S., 2001. Performance and daylighting applications of Solatube, the tubular skylight. Proc. 9th European Lighting Conf. Lux Europa 2001, Reykjavik, p. 360-384.
Brinkworth, B.J., 1977. Autocorrelation and stochastic modelling of insolation sequences. Solar Energy, vol. 19, p. 343-347.
C
Callow, J.M., 2003. Daylighting using tubular light guide systems. PhD. Thesis, University of Nottingham.
Carter, D.J., 2002. The measured and predicted performance of passive solar light pipe systems. Lighting Research and Technology, vol. 33, no. 1, p. 39-52.
Carter, D.J., 2004. Developments in tubular daylight guidance systems. Building Research and Information, vol. 32, p. 220-234.
Carter, D., 2014. LRT Digest 2 Tubular daylight guidance systems. Lighting Research and Technology, vol. 46, no. 4, p. 369-387.
Carter, D.J., Al Marwaee, M., 2009. User attitudes toward tubular daylight guidance systems. Lighting Research and Technology, vol. 41, no. 1, p. 71-85.
CIE 164:2005. Hollow light guide technology and applications. Technical Report, Vienna: CIE Central Bureau.
CIE 173:2006. Tubular daylight guidance systems. Technical Report, Vienna: CIE Central Bureau.
CIE 22: 1973. Standardisation of luminance distribution on clear skies. CIE Publ., Zürich.
CIE 70: 1987.The measurement of absolute luminous intensity distributions. Technical Report, Vienna: CIE Central Bureau.
CIE 86: 1990. CIE1988 2°spectral luminous efficiency function for photopic vision. Publ., Vienna: CIE Central Bureau.
Clarke, J.A., 2001. Energy simulation in building design. Oxford: Butteworth-Heinemann.
Clear, R., 1982. Calculation of turbidity and direct sun illuminance. Berkeley: Memo to Daylight Group, LBL, CA.
Cohen, M.F., Wallace, R., 1993. Radiosity and realistic image synthesis. San Diego: Academic Press Professional.
Commission Internationale de l´Eclairage, CIE, 1955. Natural daylight. Official recommendation. Compte Rendu CIE 13 Session 1955, 2, part 3.2, p. 2-4, Paris: Central Bureau CIE.
D
Darula, S., 2010. Vplyv ohybu svetlovodu na účinnosť prenosu svetla tubusom svetlovodu (Bend influence on the light transmission efficiency of a tubular light guide). Kurz osvětlovací techniky XXVIII, Kouty nad Desnou. Ostrava: VŠBTU of Ostrava, p. 20-21. (in Slovak).
Darula, S., Kittler, R., 2009. Measurements of optical properties of hollow light guide components using sky simulations. Proc. Int. Conf. Svetlo – Licht 2009, Jasná. Bratislava: Typhoon, s.r.o., p. 74-77.
Darula, S., Kittler, R., Kocifaj, M., 2010. Luminous effectiveness of tubular light-guides in tropics. Applied Energy, vol. 87, no. 11, p. 3460-3466.
Darula, S., Kittler, R., Kocifaj, M., Plch, J., Mohelníková, J., Vajkay, F., 2009. Osvětlování světlovody (Light guide illumination). Praha: GRADA Publishing, a.s., 160 pages. (in Czech).
Darula, S., Kittler, R., Kómar, L., 2011. Influence of the sky luminance type on the light transmission efficiency of tubular light guides. Proc. of 27th Session of the CIE, Sun City, Vienna: CIE Central Bureau, p. 742-746.
Darula, S., Kocifaj, M., Kittler, R., Kundracik, F., 2010. Illumination of interior spaces by bended hollow light guides: application of the theoretical light propagation method. Solar Energy, vol. 84, no. 12, p. 2112-2119.
Darula, S., Kocifaj, M., Mohelníková, J., 2013. Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions. Optik, vol. 124, no. 17, p. 3165-3169. http://dx.doi.org/10.1016/j.ijleo.2012.09.052 .
Darula, S., Krasňan, M., 2008. Možnosti využitia svetlovodov na denné osvetlenie budov (Possibilities of guide light utilization for daylighting in buildings). CD Proc. Seminár Slovalux 2008, Banská Bystrica. Bratislava: Typhoon, s.r.o., 9 pages. (in Slovak).
Darula, S., Kundracik, F., Kocifaj, M., Kittler, R., 2010. Tubular light guides: estimation of indoor illuminance levels. Leukos, vol. 6, no. 3, p. 241-252.
Darula, S., Mohelníková, J., 2011. Light transmission due to the tubular light guide indoor cover. Proc. of the 5th Int. Conf. on Solar Radiation and Daylighting - SOLARIS 2011, Brno: FCE BUT, p. 57-61.
Darula, S., Rybár, P., Mohelníková, J., Popeliš, M., 2010. Measurement of tubular light guide efficiency under the artificial sky. Przeglad Elektrotechniczny (Electrical Review), vol. 86, no. 10, p. 177-180.
Deller, C.A., Franklin, J., 2006. Monte Carlo ray-tracing in particle-doped light guides. Lighting Research and Technology, vol. 38, p. 95-108.
van Derlofske, J.F., Hough, T.A., 2004. Analytical model of flux propagation in light-pipe systems. Optical Engineering, vol. 43, no. 7, p. 1503–1510.
Dobre, O., Achard, G., 2005. Optical simulation of lighting by hollow light pipes. Ninth Int. IBPSA Conf. Montréal, Canada, Building Simulation 2005, p. 263-270.
Dorosz, J., Dybczyński, W., 2004. Analysis of luminous flux transfer through a conical ring-core light guide. Optica Applicata, vol. 34, no. 3, p. 349-364.
Dutton, S., Shao, L., 2007. Raytracing simulation for predicting light pipe transmittance. International Journal of Low Carbon Technologies, vol. 2, no. 4, p. 339-358.
E
Edmonds, I., 2005. Daylighting high-density residential buildings with light redirecting panels. Lighting Research and Technology, vol. 37, no. 1, p. 73-87.
Edmonds, I., 2010. Transmission of mirror light pipes with triangular, rectangular, rhombic and hexagonal cross section. Solar Energy, vol. 84, no. 6, p. 928-938.
Edmonds, I.R., Moore, G.I., Smith, G.B., Swift, P.D., 1995. Daylighting enhancement with light pipes coupled to laser-cut light deflecting panels. Lighting Research and Technology, vol. 27, no. 1, p. 27-35.
Edmonds, I.R., Reppe, l.J., Jardine, P., 1997. Extractors and emitters for light distribution from hollow light guides. Lighting Research and Technology, vol. 29, no. 1, p. 23.
Ekren, N., Gorgulu, S., 2012. An investigation into the usability of straight light-pipes in Istanbul. Energy Education Science and Technology Part A: Energy Science and Research, vol. 30, no. 1, p. 637-644.
Ellis, P.G., Strand, R.K., Baumgartner, K.T., 2004. Simulation of tubular daylight devices and daylight shelves in EnergyPlus. SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, p. 1–8.
Elmualim, A.A., Smith, S., Riffat, S.B., Shao, L., 1999. Evaluation of dichroic material for enhancing light pipe/natural ventilation and daylighting in an integrated system. Applied Energy, vol. 62, no. 4, p. 253-266.
Enarun, D., Littlefair, P., 1995. Luminance models for overcast skies: assessment using measured data. Lighting Research and Technology, vol. 27, no. 1, p. 53-58.
F
Fell, F., Fischer, J., 2001. Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 69, p. 351-388.
Fernandez-Balbuena, A.A., Vazquez-Moliní, D., García-Fernandez, B., García-Rodríguez, L., Galán-Cañestro, T., 2010. Daylight illumination system by vertical transparent prismatic lightguide for an office building. Proc. Colour and Light in Architecture, First Int. Conf. 2010, p. 360-365.
Fraas, L.M., Pyle, W.R., Ryason, P.R., 1983. Concentrated and piped sunlight for indoor illumination. Applied Optics, vol. 22, no. 4, p. 578-582.
G
García-Fernández, B.,Vázques-Moliní, D., Fernandez-Balbuena, A.A., 2011. Lighting quality for aluminum and prismatic light guides. Proc. of SPIE - The International Society for Optical Engineering, vol. 8170, art. no. 81700T.
García-Fernández, B.,Vázques-Moliní, D., Fernandez-Balbuena, A.A., Bernabeu, E., 2012. Light output losses of prism light guides. Proc. SPIE, vol. 8550, Optical Systems Design 2012, art. no. 85502Z.
Gerchikov, V., Mossman, M., Whitehead, L., 2005. Modelling attenuation versus length in practical light guides. Leukos, vol. 1, no. 4, p. 47–59.
Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B., 1984. Modelling the interaction of light between diffuse surfaces. Computer Graphics (Acm Siggraph '84 Proceedings), vol. 18, p. 212-222.
Görgülü, S., Ekren, N., 2013. Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable balast. Energy and Buildings, vol. 61, p. 172-176.
Greysukh, V., Levin, I., 1992. Propagation of light through an optically thick flat homogeneous cloud layer. Waves in Random Media, vol. 2, no. 4, p. 289-301.
Gueymard, C.A., 2004. The sun´s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, vol. 76, p. 423-453.
Gupta, A., Lee, J., Koshel, R.J., 2001. Design of efficient lightpipes for illumination by an analytical approach. Applied Optics, vol. 40, no. 22, p. 3640-3648.
H
Habel, J., Dvořáček, K., Dvořáček, V., Žák, P., 1995. Světelná technika a osvětlování (Lighting system and illumination). Praha: FCC Public. (in Czech).
Halahyja, M., Beťko, B., Bloudek, K., Puškáš, J., Tomašovič, P., 1985. Stavebná tepelná technika, akustika a osvetlenie (Building thermal engineering, acoustics and illumination). Bratislava: ALFA, Praha: SNTL. (in Slovak).
Hall, I.J., Prairie, R.R., Anderson, H.E., Boes, E.C., 1978. Generation of a typical meteorological year for 26 SOLMET stations. Saudia Laboratories Report SAND 78-1601, Albuquerque, NM.
Harrison, S.J., McCurdy, R., Cooke, R., 1998. Preliminary evaluation of the daylighting and thermal performance of cylindrical skylights. Proc. of Daylighting 98 - Int. Conf. on Daylighting Technologies for Energy Efficiency in Buildings, p. 205-212.
Hecht, J., 1999. City of Light: the story of fiber optics. Oxford: Oxford University Press.
Heim, D., 2007. Komputerowa analiza oswietlenia dziennego i ocena parametrów komfortu wizualnego w pomieszczeniach (Daylight computer analysis and evaluation of comfort parameters in interiors). Lódz: Politechnika Lódzka, 189 pages. (in Polish).
Hentschel, H.J., 2002. Licht und Beleuchtung - Grundlagen und Anwendungen der Licht (Light and lighting - basic principles and applications of light). Heidelberg: Hüthig Verlag. (in German).
Hopkinson, R.G., Peterbridge, P., Longmore, J., 1966. Daylighting. London: Heinemann.
Hsu, W.F., Shen, Y.T., Chu, I.L., 2012. Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting. Journal of Optics, vol. 14, no. 12, art. no. 125703.
Ch
Chaiwiwatworakul, P., Chirarattananon, S., 2004. An investigation of atmospheric turbidity of Thai sky, Energy and Buildings, vol. 36, p. 650-659.
Chella, F., Gentile E., Zazzini, P., 2007. Natural light in underground areas of a historical building: an example of application of double light pipes in preservation of the architectonic heritage. Proc. 6th Int. Conf. on Sustainable Energy Technologies SET 2007, Santiago de Chile, p. 232-237.
Chella, F., Scarduzio, A., Zazzini, P., 2006. Numerical and experimental analysis of light pipes performances: comparison of the obtained results. Proc. 23rd Int. Conf. on Passive and Low Energy Architecture PLEA 2006, Geneva, Part II, p. 219-224.
Chella F., Zazzini P., Carta, G., 2006. Compared numerical and reduced scale experimental analysis on light pipes performances. SET2006 - 5th Int. Conf. on Sustainable Energy Technologies, Vicenza, p. 1-6.
Chirarattananon, S., Chedsiri, S., Renshen, L., 2000. Daylighting through light pipes in the tropics. Solar Energy, vol. 69, no. 4, p. 331–341.
Chirarattananon, S., Hien, V.D., Chaiwiwatworakul, P., Chirarattananon, P., 2010. Simulation of transmission of daylight through cylindrical light pipes. Journal of Sustainable Energy and Environment, vol. 1, p. 97–103.
I
IEC 50(845)/CIE 17.4:1987. International lighting vocabulary. Vienna: CIE Central Bureau.
IESNA Lighting Handbook-Reference and Application, 9th Edition, New York: IESNA, 2000.
Igawa, N., Koga, Y., Matsuzawa, T., Nakamura, H., 2004. Model of sky radiance distribution and sky luminance distribution. Solar Energy, vol. 77, no. 2, p. 137-157.
ISO 15469:2004. Spatial distribution of daylight - CIE Standard general sky. ISO Geneva.
J
Janák, M., 1997. Coupling building energy and lighting simulation. Proc. 5th Int. Conf. Building Simulation ´97, Prague, vol. 2, p. 313-319.
Janečková, L., Bošová, D., 2013. Optimisation of the design of daylight guidance systems including measurement methodology. Advanced Materials Research, vol. 649, p. 97-100.
Janečková, L., Bošová, D., 2014. Svetlovod v strešnej konštrukcii v horskej oblasti (Light guide in a roof construction in a mountain area). Stavebné materiály (Building Materials), vol. 9, no. 4, p. 20-21. ISSN 1336-7617. (in Slovak).
Jenkins, D., 2004. Potential for the use of light pipes and their environmental implications. PhD. Thesis, Edinburgh: Napier University.
Jenkins, D., Muneer, T., 2003. Modelling light pipe performances – a natural daylighting solution. Building and Environment, vol. 38, no. 7, p. 965-972.
Jenkins, D., Muneer, T., 2004. Light-pipe prediction methods. Applied Energy, vol. 79, p. 78-86.
Jenkins, D., Muneer, T., 2004. Review of light pipe prediction methods. Applied Energy, vol. 79, no. 1, p. 77-86.
Jenkins, D., Muneer, T., Kubie, J., 2005. A design tool for predicting the performance of light pipes. Energy and Buildings, vol. 37, p. 485-492.
Jenkins, D., Zhang, X., Muneer, T., 2004. Formulation of semi-empirical model for predicting the illuminance of light pipes. Energy Conversion and Management, vol. 46, no. 13-14, p. 2288-2300.
Jenkins, D., Zhang, X., Muneer, T., 2005. Formulation of semi-empirical models for predicting the illuminance of the light pipes. Energy Conversion and Management, vol. 46, p. 2288-2300.
Jensen, H.W., 2001. A practical guide to global illumination using photon mapping. Lectures Sigghraph 2001 Course 38, Stanford University.
Jong-Woei Whang, A., Lin, C.M., Yeh, S.C., 2013. Investigation of prismatic daylight collectors with different apexes. IEEJ Transactions on Electronics, Information and Systems, vol. 133, no. 1, p. 54-60.
Jong-Woei Whang, A., Lin, C.M., Yeh, S.C., 2013. Investigation of prismatic daylight collectors with different apexes. Transactions of the ASME, Journal of Solar Energy Engineering, vol. 135, no. 1, art. no. 11015.
K
Kajiya, J.T., 1986. The rendering equation. Siggraph´86 Proc. of the 13th Annual Conf. on Computer Graphic and Interactive Techniques, New York, ACM SIGGRAPH Computer Graphic, vol. 20, no. 4, p. 143-150.
Karamanolis, S., 1996. Sluneční energie - východisko z ekologicko energetické krize (Solar energy - a way out of ecological and energy crises). Translated by Eckertová, L., Praha: MAC. (in Czech).
Karayel, M., Navvab, M., Ne´eman, E., Selkowitz, S., 1984. Zenith luminance and sky luminance distribution for daylighting calculation. Energy and Buildings, vol. 6, no. 2-4, p. 283-291.
Kasten, F., Young, A.T., 1989. Revised optical air mass tables and approximation formula. Applied Optics, vol. 28, no. 22, p. 4735-4738.
Kasten, F., Young, A.T., 1993. Discussion on the relative optical air mass. Lighting Research and Technology, vol. 25, no. 3, p. 129-130.
Kawczynski, C., Guo, Z., 2011. Analyzing transmittance of specular and diffuse surface light pipes using a Monte Carlo ray trace simulation. Rutgers, The State University of New Jersey, 11 pages, http://charliekawczynski.com/files/research/RHT_Guo/Analyzing%20Transmittance%20of%20Specular%20and%20Diffuse%20Surface%20Light%20Pipes%20using%20a%20Monte%20Carlo%20Ray%20Trace%20Simulation.pdf .
Kim, J.T., Kim, G., 2010. Overview and new developments in optical daylighting systems for building a healthy indoor environment. Building and Environment, vol. 45, no. 2, p. 256–269.
Kittler, R., 1967. Standardisation of the outdoor conditions for calculation of the daylight factor with clear skies. Proc. CIE Int. Conf. Sunlight in Buildings, Rotterdam: Bouwcentrum, p. 273-286.
Kittler, R., 1985. Luminance distribution characteristics of homogeneous skies: a measurement and prediction strategy. Lighting Research and Technology, vol. 17, no. 4, p. 183-188.
Kittler, R., 1993. Relative scattering indicatrix: derivation from regular radiance/luminance sky scans. Lighting Research and Technology, vol. 25, no. 3, p. 125-127.
Kittler, R., 2007. Daylight prediction and assessment: theory and design practice. Architectural Science Review, vol. 50, no. 2, p. 94-99.
Kittler, R., Darula, S., Kambezidis, H., Bartzokas, A., 2001. Daylight climate specification based on Athens and Bratislava data. Proc. Conf. Lux Europa 2001, Reykjavik, p. 442 – 449.
Kittler, R., Darula, S., Kocifaj, M., Kundracik, F., 2010. New possibilities to design tubular light guides in energy efficient buildings. Proc. of CIE 2010 "Lighting Quality and Energy Efficiency", Vienna. Vienna: CIE Central Bureau, p. 680-682.
Kittler, R., Kittlerová L., 1975. Návrh a hodnotenie denného osvetlenia (Design and evaluation of daylighting). Bratislava: Alfa. (in Slovak).
Kittler, R., Kocifaj, M., Darula, S., 2012. Daylight science and daylight technology. New York: Springer.
Kittler, R., Mikler, J., 1986. Základy využívania slnečného žiarenia (Basics of the utilization of solar radiation). Bratislava: Veda. (in Slovak).
Kittler, R., Perez, R., Darula, S., 1998. A set of standard skies characterizing daylight conditions for computer and energy conscious design. Final Report, US-SK grant 92 052 and A set of standard skies. Bratislava: Polygrafia SAV.
Kittler, R., Pulpitlová, J., 1988. Základy využívania prírodného svetla (Basics of the utilization of daylight). Bratislava: Veda. (in Slovak).
Kittler, R., Puškáš, J., 1980. Požiadavky na insoláciu súborov stavieb (Requirements for insolation in buildings). Bratislava: SVŠT. (in Slovak).
Kobav, M.B., Bizjak, G., 2005. Development of a substitutive light source for indoor daylight calculations. Building and Environment, vol. 40, no. 12, p. 1611-1618.
Kocifaj, M., 2009. Analytical solution for daylight transmission via hollow light pipes with a transparent glazing. Solar Energy, vol. 83, no. 2, p. 186-192.
Kocifaj, M., 2009. Efficient tubular light guide with two-component glazing with Lambertian diffuser and clear glass. Applied Energy, vol. 86, no. 7-8, p. 1031-1036.
Kocifaj, M., 2009. Osvetľovanie svetlovodmi: od modelu k návrhu realizácie (Illumination via light-guides: from model to the design of realization). Proc. Kurz osvětlovací techniky XXVII. Ostrava: VŠB, TU of Ostrava, p. 108-111. (in Slovak).
Kocifaj, M., 2010. HOLIGILM-based simulations for a bended light guide. Przeglad Elektrotechniczny, vol. 86, no. 10, p. 218-221.
Kocifaj, M., Darula, S., 2002. Modelsky - jednoduchý nastroj pre modelovanie rozloženia jasu na oblohe (Modelsky - a simple tool for sky luminance distribution modelling). Meteorologické zprávy (Meteorological Report), vol. 55, no. 4, p. 110 – 118. (in Slovak).
Kocifaj, M., Darula, S., Kittler, R., 2008. HOLIGILM: hollow light guide interior illumination method – an analytic calculation approach for cylindrical light-tubes. Solar Energy, vol. 82, no. 3, p. 247-259.
Kocifaj, M., Darula, S., Kittler, R., 2011. Transmission properties of light pipes under diffuse light and direct sunbeams. Proc. of the 5th Int. Conf. on Solar Radiation and Daylighting - SOLARIS 2011, Brno: FCE BUT, p. 137-142.
Kocifaj, M., Darula, S., Kundracik, F., 2010. Tubusové svetlovody – modelovanie interiérových osvetleností pri štandardných svetelných podmienkach (Tubular light guides – modelling of interior illuminance under standard luminous conditions). Světlo (Light), vol. 2, p. 52-54. (in Slovak).
Kocifaj, M., Kómar, L., Kohút, I., 2014. Modeling the aerosol effects on the light field below a tubular-pipe: A case of clear sky conditions. Solar Energy, vol. 107, p. 122-134.
Kocifaj, M., Kundracik, F., 2011. Luminous intensity solid of tubular light guide and its characterization using "asymmetry parameter". Solar Energy, vol. 85, no. 9, p. 2003-2010.
Kocifaj, M., Kundracik, F., Darula, S., Kittler, R. 2009. Modeling the light-guide performance using new freeware HOLIGILM 4.2. Proc. Int. Conf. Svetlo – Light 2009, Jasná. Bratislava: Typhoon, s.r.o., p. 55-60.
Kocifaj, M., Kundracik, F., Darula, S., Kíttler, R., 2010. Theoretical solution for light transmission of a bended hollow light guide. Solar Energy, vol. 84, no. 8, p. 1422-1432.
Kocifaj, M., Kundracik, F., Darula, S., Kittler, R., 2012. Availability of luminous flux below a bended light-pipe: design modelling under optimal daylight conditions. Solar Energy, vol. 86, no. 9, p. 2753-2761.
Kómar, L., 2011. Contribution to modelling of light transmission through the cupola of light guides. Proc. of Int. Conf. Light Světlo 2011. Praha: Česká společnost pro osvětlování, p. 23-25.
Kómar, L., 2012. Directional reflectance of high-reflective layer inside the light tubes. Proc. of Int. Conf. LUMEN V4, Bratislava. Bratislava: Kongres Management, p. 215-219.
Kómar, L., 2013. Directional reflectance and more accurate prediction of tubular light guide efficiency. Przeglad Elektrotechniczny, vol. 89, no. 6, p. 328-330.
Kómar, L., Darula, S., 2012. Determination of the light tube efficiency for selected overcast sky types. Solar Energy, vol. 86, no. 1, p. 157-163.
Kómar, L., Kocifaj, M., 2013. Optics of hemispherical top dome and its effect on tubular light guide efficiency: diffuse light case. Applied Optics, vol. 52, no. 5, p. 1100-1109.
Krasňan, M., 2009. Meranie optických vlastností svetlovodov (Measurement of optical properties of light-guides). Proc. of the 18th Int. Conf. Svetlo 2009, Jasná, p. 252-257. (in Slovak).
Krasňan, M., 2010. Light guides – measuring the transmission and refraction of light through the diffuser. CD Proc. of the Elitech‘10, Bratislava, FEEIT TU, 4 pages.
Krasňan, M., Darula, S., 2008. Príspevok k výpočtu osvetlenosti pod tubusovým svetlovodom (Contribution to the calculation of illuminance under tubular light guide). Proc. of the Int. Conf. Budovy a prostredie 2008: trvalo udržateľná výstavba, Bratislava. Bratislava: STU – Vydavateľstvo STU, p. 52-56. (in Slovak).
Krasňan, M., Darula, S., 2009. Unconventional daylight transport to building interiors. Proc. of the 11th European Lighting Conf. Lux Europa 2009, Istanbul, p. 39-44.
Krasňan, M., Smola, A., 2010. Aspects of measurement and transfer of refraction of light through light guide diffuser. LUMEN V 4: IIIrd Conf. of the Visegrad Countries on Lighting. Ostrava: VSB-TU of Ostrava, p. 111-114.
Krasňan, M., Smola, A., Darula, S., 2009. Measurements of light transmittance of diffusers used for hollow light guides. CD Lux Junior 2009. Tagungsband Proc. 8. Int. Forum für den lichttechnischen Nachwuchs. Dörnfeld bei Ilmenau: TU Ilmenau.
Krch, V., 1952. Oslunění budov a vnitřků (Insolation of buildings and interiors). Praha: Technicko-vědecké vydavatelství. (in Czech).
Krtilová, A., Matoušek, J., Monzer, L., 1981. Světlo a osvětlování (Light and illumination). Praha: Avicenum. (in Czech).
Kryak, I., Gokmen, G., 2013. Increase energy savings with lighting automation using light pipes and power LEDs. International Science Index, vol. 7, no. 7, p. 1014-1021.
Kuznetsov, A.L., Oseledets, E.Yu., Solovyov, A.K., Stolyarov, M.V., 2012. Experience of application of hollow tubular light guides for natural illumination in Russia. Light and Engineering, vol. 20, no. 3, p. 62-70.
Kwok, C., 2011. A study of horizontal light pipe system for interior daylighting in a dense urban environment. PhD. Thesis, The Hong Kong Polytechnic University.
L
Lam, J.C., Li, D.H.W., 2003. An analysis of electricity end-use in air-conditioned office buildings in Hong Kong. Building and Environment, vol. 38, no. 3, p. 493-498.
Lambert, J.H., 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Augsburg: Klett Verlag. German translation by E. Auding: Lambert´s Photometrie, Leipzig: Verlag Engelmann, 1892.
Laouadi, A., 2005. Design insights on tubular skylights. Lighting, vol. 25, no. 1, p. 38-41.
Laouadi, A., 2011. The central sunlighting system: development and validation of an optical prediction model. Journal of Building Performance Simulation, vol. 4, no. 3, p. 205-226.
Laouadi, A., 2013. Advanced performance prediction of tubular daylighting devices: New research from the national research council of Canada takes an in-depth look inside TDDs. Lighting Design and Application, vol. 43, no. 9, p. 52-56.
Laouadi, A., Arsenault, C., 2006. Validation of skylight performance assessment software. Proc. ASHRAE Transactions - Annual Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, p. 44-56, ASHRAE Transactions, vol. 112, part. 2, p. 1-13.
Laouadi, A., Atif, M.R., 1998. Optical model for predicting transmittance, absorptance and reflectance of transparent domed skylights. Lighting Research and Technology, vol. 30, no. 3, p. 111-118.
Laouadi, A., Atif, M.R., 1999. Predicting optical and thermal characteristics of transparent single-glazed domed skylights. ASHRAE Transactions, vol. 105, part 2, p. 325-333.
Laouadi, A., Atif, M.R., 2001. Development of analysis software for the optical characteristics and daylighting performance of conventional and tubular skylights. Proc. of eSim 2001 Conf., p. 85-92.
Laouadi A., Atif, M.R., 2001. Prediction model of optical characteristics for domed skylights under standard and real sky conditions. Proc. 7th Int. IBPSA Conf. Rio de Janeiro, p. 1101–1108.
Laouadi, A., Saber, H.H., Galasiu, A.D., Arsenault, C., 2013. Optical model for tubular hollow light guides (1415-RP). HVAC&R Research, vol. 19, no. 3, p. 324-334.
Laouadi, A., Saber, H.H., Galasiu, A.D., Arsenault, C., 2013. Tubular daylighting devices - Development and validation of a thermal model (1415-RP). HVAC&R Research, vol. 19, no. 5, p. 513-535.
Laouadi, A., Galasiu, A.D., Saber, H.H., Arsenault, C., 2013. Tubular daylighting devices. Part I: Development of an optical model (1415-RP). HVAC&R Research, vol. 19, no. 5, p. 536-556.
Laouadi, A., Arsenault, C., Saber, H.H., Galasiu, A.D., 2013. Tubular daylighting devices - part II: Validation of the optical model (1415-RP). HVAC&R Research, vol. 19, no. 5, p. 557-572.
Laouadi, A., Saber, H.H., 2014. Performance of tubular daylighting devices. NRC Construction, Construction Technology Update, no. 82, June 2014, ISSN 1206-1220. http://www.nrc-cnrc.gc.ca/ctu-sc/files/doc/ctu-sc/ctu-n82 eng.pdf .
Lenoble, J., 1995. Radiative transfer in scattering and absorbing atmospheres: standard computation procedures. Hampton: A. Deepak Publishing.
Leutz, R., Suzuki, A., 2001. Nonimaging Fresnel lenses: design and performance of solar concentrators. Heidelberg: Springer Verlag.
Li, D.H.W., Lau, Ch.C.S., Lam, J.C., 2005. Predicting daylight illuminance on inclined surfaces using sky luminance data. Energy, vol. 30, no. 9, p. 1649-1665.
Li, D.H.W., Tsang, E.K.W., 2008. An analysis of daylighting performance for office buildings in Hong Kong. Building and Environment, vol. 43, no. 9, p. 1449-1458.
Li, D.H.W., Tsang, E.K.W., Cheung, K.L., Tam, C.O., 2010. An analysis of light-pipe system via full-scale measurements. Applied Energy, vol. 87, no. 3, p. 799–805.
Li, W., Wang, M., Hu, Q., 2012. Application of seamless prism light guide used in a room with high temperature and humidity. Advanced Materials Research, vol. 374-377, p. 1151-1154.
Liberman, J., 1996. Sunpipe daylighting systems. Wellness and Energy Lighting Co., USA.
Littlefair, P.J., 1996. Designing with innovative daylighting. Building Research Establishment Report, London: BRE.
Liu, B.Y.H., Jordan, R.C., 1960. The interrelation and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, vol. 4, no. 3, p. 1-19.
Lo Verso, V.R.M., Pellegrino, A., Serra, V., 2011. Light transmission efficiency of daylight guidance systems: an assessment approach based on simulations and measurements in a sun/sky simulator. Solar Energy, vol. 85, no. 11, p. 2789-2801.
López, G., Batlles, F.J., 2004. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study. Annales Geophysicae, vol. 22, p. 2657-2668.
Lund, H., 1991. The design reference year. Building Simulation '91, 2nd World Congress on Technology Improving the Energy Use, Comfort and Economics of Buildings Worldwide, Nice: Nice Sophia Antipolis.
Lund, H., Eidorff, S., 1981. Selection methods for production of test reference years. Final Report (short version), Contract no. 284-77 ES DK, Report EUR 7306 EN, Lyngby: Thermal Insulation Laboratory, Technical University of Denmark.
M
Maňková, L., Hraška, J., Janák, M., 2009. Simplified determination of indoor daylight illumination by light pipes. Slovak Journal of Civil Engineering, vol. 17, no. 4, p. 22-30.
Maradudin, A.A., Leskova, T.A., Méndez, E.R., 2003. Two-dimensional random surfaces that acts as circular diffusers. Optics Letter, vol. 28, no. 2, p. 72-74.
Mardaljevic, J., 2000. Simulation of annual daylighting profiles for internal illuminance. Lighting Research and Technology, vol. 32, no. 3, p. 111-118.
Mardaljevic, J., Painter, B., Andersen, M., 2009. Transmission illuminance proxy HDR imaging: a new technique to quantify luminous flux. Lighting Research and Technology, vol. 41, no. 1, p. 27–49.
Markou, M.T., Kambezidis, H.D., Bartzokas, A., Darula, S., Kittler, R., 2007. Generation of daylight reference years for two European cities with different climate: Athens, Greece, and Bratislava, Slovakia. Atmospheric Research, vol. 86, no. 3-4, p. 315-329.
Markus, T.A., Morris, E.N., 1980. Buildings, climate and energy. London: Pitman Publ. Ltd.
Marwaee, M.Al., Carter, D.J., 2006. A field study of tubular daylight guidance installations. Lighting Research and Technology, vol. 38, p. 241-258.
Marwaee, M., Carter, D., 2006. Tubular guidance systems for daylight: achieved and predicted installation performances. Applied Energy, vol. 83, no. 7, p. 774-788.
Mayhoub, M., 2012. Guidelines for daylight guidance systems application. Proc. of the 28th Conf. PLEA 2012, Opportunities, Limits and Needs Towards an environmentally responsible architecture, Lima.
Mayhoub, M.S., Carter, D., 2009. Hybrid lighting systems: a feasibility study for Europe. Proc. 11th European Lighting Conf., Istanbul, p. 265-272.
Mayhoub, M., Carter, D., 2011. Hybrid lighting systems: performance and design. Lighting Research and Technology, vol. 44, no. 3, p. 261–276.
Mayhoub, M., Carter, D., 2012. A feasibility study for hybrid lighting systems. Building and Environment, vol. 53, July 2012, p. 83-94.
Mayhoub, M.S., Carter, D.J., Chung, T.M., 2010. Towards hybrid lighting systems: a review. Lighting Research and Technology, vol. 42, no. 1, p. 51-71.
Ming, Ch.Ch., Long, Ch.J., 2006. Optical transfer functions for specific-shaped apertures generated by illumination with a rectangular light pipe. Journal of the Optical Society of America A: Optics, Image Science and Vision, vol. 23, no. 12, p. 3123-3132.
Mohelníková, J., 2007. Illumination by tubular light guides. Elektrotechnika, vol. 7, no. 5, p. 24-25.
Mohelníková, J., 2008. Daylighting and energy saving with tubular light guides. WSEAS Journal Transactions on Environment and Development, vol. 4, no. 3, p. 200-209.
Mohelníková, J., 2008. Determination of angular transmittance of glasses for light guides. Proc. of the 4th Int. Conf. Mechatronic Systems and Materials, Bialystok: Technical University, p. 293.
Mohelníková, J., 2008. Determination of angular transmittance of glasses for light guides. Acta Mechanica et Automatica, vol. 2, no. 4, p. 71-74.
Mohelníková, J., 2008. Electric energy savings and light guides. WSEAS e-journal Energy and Environment, vol. 1, no. 1, p. 470-473.
Mohelníková, J., 2008. Evaluation of indoor illuminance from light guides. Light and Visual Environment, vol. 32, no. 1, p. 20-26.
Mohelníková, J., 2008. Optical properties of tubular light guides. Proc. of the 10th World Renewable Energy Congress - WREC X, Glasgow: Elsevier, p. 512-515.
Mohelníková, J., 2009. Hodnocení osvětlenosti tubusovými světlovody (Evaluation of illumination by tubular light guides). Stavební obzor, no. 1, p. 1-5. (in Czech).
Mohelníková, J., 2009. Tubular light guide evaluation. Building and Environment, vol. 44, no. 10, p. 2193-2200.
Mohelníková, J., Plch, J., Darula, S., 2007. The flux method for determination of indoor illuminance from tubular light guides. Building Research Journal, vol. 55, no. 1-2, p. 85-96.
Mohelníková, J., Vajkay, F., 2008. Daylight simulations and tubular light guides. International Journal of Sustainable Energy, vol. 27, no. 3, p. 155-163.
Mohelníková, J., Vajkay, F., 2009. Study of tubular light guides illuminance simulations. Leukos, vol. 5, no. 4, p. 250-255.
Mohelníková, J., Vajkay, F., Darula, S., 2007. Hodnocení osvětlení světlovody (Evaluation of light-guides). Projekt – Stavba, vol. 2, no. 3, p. 9-12. (in Czech).
Moon, P., Spencer, D.E., 1942. Illumination from a non-uniform sky. Illuminating Engineering, vol. 37, no. 10, p. 707-726.
Mora-Lopéz, L.L., Sidrach-de-Cardona, M., 1997. Characterization and simulation of hourly exposure series of global radiation. Solar Energy, vol. 60, no. 5, p. 257-270.
Moreno, I., 2010. Output irradiance of tapered lightpipes. Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 27, no. 9, p. 1985-1993.
Morf, H., 1998. The stochastic two-stage solar irradiance model (STRIM). Solar Energy, vol. 62, no. 2, p. 101-112.
Muneer, T., 1997. Solar radiation and daylight models for the energy efficient design of buildings. Oxford: Architectural Press.
N
Nair, M.G., Ramamurthy, K., Ganesan, A.R., 2014. Classification of indoor daylight enhancement systems. Lighting Research and Technology, vol. 46, no. 3, p. 245-267.
Nakamura, H., Oki, M., Higa, S., 1980. Standardization of the zenith luminance in Japan. Proc. of the Daylight Symposium, Berlin: TU Berlin, p. 51-58.
Navaab, M., Karayel, M., Neeman, E., Selkowitz, S., 1986. Analysis of luminous efficacy for daylight calculations. Proc. of the Int. Conf. Daylighting, Long Beach, Atlanta: ASHRAE Publications Sales, p. 23-27.
Ng, E., Cheng, V., Gadi, A., Mu, J., Lee, L., 2007. Defining standard skies for Hong Kong. Building and Environment, vol. 42, no. 2, p. 866-876.
Nielsen, A.V., 1944. Ole Romer. En Skildring af hans Liv og Gerning. Kobenhavn.
Nilsson, A.M., Jonsson, J.C., Roos, A., 2014. Spectrophotometric measurements and ray tracking simulations of mirror light pipes to evaluate the color of the transmitted light. Solar Energy Materials and Solar Cells, vol. 124, May 2014, p. 172-179.
O
Oakley, G., Riffat, S.B., Shao, L., 1999. Daylight performance of light-pipes. Proc. of the CIBSE National Conf., Harrogate, p. 159-74.
Oakley, G., Riffat, S.B., Shao, L., 2000. Daylight performance of light pipes. Solar Energy, vol. 69, p. 89-98.
Oh, S.J., Chun, W., Riffat, S.B., Jeon, Y., Dutton, S., Han, H.J., 2013. Computational analysis on the enhancement of daylight penetration into dimly lit spaces: Light tube vs. fiber optic dish concentrator. Building and Environment, vol. 59, p. 261-274.
P
Paroncini, M., Calcagni, B., Corvaro, F., 2007. Monitoring of a light-pipe system. Solar Energy, vol. 81, no. 9, p.1180-1186.
Paroncini, M., Corvaro, F., Nardini, G., Pistolesi, S., 2009. The experimental and numerical analysis of a light pipe using a simulation software. World Academy of Science, Engineering and Technology, vol. 40, p. 580-583.
Pérez, S.M.M., Chavarria, A.J.A., López, O.E.E., 2011. Design and construction of an automated hybrid lighting system. Proc. of the ASME 2011 5th Int.l Conf. on Energy Sustainability ES2011 USA. ASME, ES2011-54.
Petrakis, M., Lykoudis, S., Kassomenos, P., Assimakopoulos, D.N., 1996. Creation of a typical meteorological year for Athens based on daylight measurements. Proc. of the 7th Conf. of Union Hellenic of Physicists and Union Cyprus of Physicists, Heraclio, Crete. (in Greek).
Piazena, H., Kockott, D., Uebelhack, R., 2005. Individuelle Bewertung der circadianen Wirksamkeit solarer und künstlich erzeugter Strahlung. Proc. Conf. Lux Europa 2005, Berlin, p. 29-32.
Plch, J., Mohelníková, J., 2008. Evaluation of a tubular light guide model. Przeglad Elektrotechniczny, vol. 84, no. 8, p. 68-69.
Plch, J.; Mohelníková, J., 2009. Vyhodnocení osvětlenosti centrálního skladu světlovody (Evaluation of the central store illumination optics). Proc. Kurz osvětlovací techniky XXVII., Kouty nad Desnou, Ostrava: VŠB TU of Ostrava, p. 294-299. (in Czech).
Plch, J.; Mohelníková, J., 2009. Denní osvětlení schodišťového prostoru výškové budovy atypickým světlovodem (Daylight stair area in tall building from atypical light-guide). Světlo, vol. 3, p. 22-23. (in Czech).
Plch, J., Mohelníková, J., Suchánek, P., 2004. Osvětlení neosvětlitelných prostor (Illumination of the non-illuminating spaces). Brno: ERA group. (in Czech).
Plch, J., Mohelníková, J., Vajkay, F., Kittler, R., Darula, S., 2007. Posouzení modelu štěrbinového světlovodu (Assessment of the apertured light-guide). Inovační podnikání a transfer technologií, vol. 15, no. 3, příloha ip&tt, p. VII-VIII. (in Czech).
R
Reinhart, Ch.F., Herkel, S., 2000. The simulation of annual daylight illuminance distribution – a state –of-art comparison of six RADIANCE-based methods. Energy and Buildings, vol. 32, p. 167-187.
Rivero, R., 1958. Illiminacion natural. Calculo del factor de dia directo para ventanas sin vidrios y con vidrios y para cielos uniformes y no uniformes. Montevideo: Instituto de la Construccion de Edificios. (in Spanish).
Robbins, C.L., 1986. Daylighting, design and analysis. New York: Van Nostrand Reinhold Company.
Robertson, A., Hedges, R., Rideout, N., 2010. Optimisation and design of ducted daylight systems. Lighting Research and Technology, vol. 42, no. 2, p. 161-181.
Robledo, L., Soler, A., 1998. Modelling irradiance on inclined planes with an anisotropic model. Energy, vol. 23, p. 193–201.
Rogora, A., Palermo, G., 1994. New component for daylighting: first italian application of a sun duct. Renewable Energy, vol. 5, no. 5-8, part II, p. 974-976.
Rosemann, A., Kaase, H., 2005. Lightpipe applications for daylighting systems. Solar Energy, vol. 78, p. 772-780.
Rosemann, A., Kaase, H., 2006. Combined daylight systems for lightpipe applications. International Journal of Low Carbon Technologies, vol. 1, no. 1, p. 10-21.
Rybár, P., 1987. Priestup svetla cez ploché stavebné sklo (Light transmission through a flat glass). Světelná technika, vol. 3, p. 37-40. (in Slovak).
Rybár, P., Šesták, F., Juklová, M., Hraška, J., Vaverka, J., 2002. Denní osvětlení a oslunění budov (Daylighting and insolation of buildings). Brno: ERA group. (in Czech).
S
Samuhatananon, S., Chirarattananon, S., Chirarattananon, P., 2011. An experimental and analytical study of transmission of daylight through circular light pipes. LEUKOS, vol. 7, no. 4, p. 203-219.
Saxe, S.G., Whitehead, L.A., 1986. Progress in the development of prism light guides. Proc. of SPIE, vol. 692, Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology. San Diego: SPIE, p. 235-240.
Shao, L., Elmualim, A. A., Yohannes, I., 1998. Mirror lightpipes: daylighting performance in real buildings. Lighting Research and Technology, vol. 30, no. 1.
Shao, L., Riffat, S.B., 2000. Daylighting using light pipes and its integration with solar heating and natural ventilation. Lighting Research and Technology, vol. 32, no. 3, p. 199-139.
Shao, L., Riffat, S.B., Hick, W., Yohannes, I., 1997. A study of performance of light pipes -under cloudy and sunny conditions in the UK. Proc. 4th Europ. Conf. on Energy – Efficient Lighting Right Light, vol. 1, part. 4, p. 155-159.
Shin, J.Y., Yun, G.Y., Kim, J.T., 2011. Daylight and energy performance of a light pipe system in an underground car park. Proc. of the 13th Int. Conf. on Civil, Structural and Environmental Engineering Computing, Chania, Crete.
Shin, J.Y., Yun, G.Y., Kim, J.T., 2012. Evaluation of daylighting effectiveness and energy saving potentials of light-pipe systems in buildings. Indoor and Built Environment, vol. 21, no. 1, p. 129-136.
Schou, A., 2012. Investigation of light pipe simulation algorithms. Technical University of Denmark, Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, 70 pages, http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6235/pdf/imm6235.pdf.
Šikula, O., Mohelníková, J., 2011. CFD simulation of thermal behaviour of tubular light guides. Proc of the 5th Int. Conf. on Solar Radiation and Daylighting - SOLARIS 2011, Brno: FCE BUT, p. 252-258.
Šikula, O., Mohelníková, J., Plášek, J., 2013. Thermal CFD analysis of tubular light guides. Energies, vol. 6, no. 12, p. 6304-6321.
Skartveit, A., Olseth, A., 1992. The probability density and autocorrelation of short-term global and beam irradiance. Solar Energy, vol. 49, no. 6, p. 477-487.
Soler, A., Gopinathan, K.K., 2000. A study of zenith luminance on Madrid cloudless skies. Solar Energy, vol. 69, no. 5, p. 403-411.
Soler, A., Gopinathan, K.K., 2004. Relation between zenith luminances for cloudless, partly cloudy and overcast skies at Madrid. Energy Conversion and Management, vol. 45, no. 15-16, p. 2583-2590.
Solovyov, A.K., 2012. Hollow tubular light guides: their application for natural illumination of buildings and energy saving. Light and Engineering, vol. 20, no. 1, p. 40-49.
Stoer, W.G., editor, 2005. Light and health in the workplace. Nederlanse Stichting Voor Verlichtingkunde.
Suehrcke, H., McCormick, P.G., 1988. The frequency distribution of instantaneous insolation values. Solar Energy, vol. 40, no. 5, p. 413-422.
Suehrcke, H., McCormick, P.G., 1988. The diffuse fraction of instantaneous solar radiation. Solar Energy, vol. 40, no. 5, p. 423-430.
Suehrcke, H., McCormick, P.G., 1989. The distribution of average instantaneous terrestrial solar radiation over the day. Solar Energy, vol. 42, no. 4, p. 303-309.
Swift, P.D., 2010. Splayed mirror light pipes. Solar Energy, vol. 84, no. 2, p. 160-165.
Swift, P.D., Lawlor, R., Smith, G.B., Gentle, A., 2008. Rectangular-section mirror light pipes. Solar Energy Materials and Solar Cells, vol. 92, no. 8, p. 969–975.
Swift, P.D., Smith, G.B., 1995. Cylindrical mirror light pipes. Solar Energy Materials and Solar Cells, vol. 36, no. 2, p. 159-168.
Swift, P.D., Smith, G.B., Franklin, J., 2006. Hotspots in cylindrical mirror light pipes: description and removal. Lighting Research and Technology, vol. 38, no. 1, p. 19-31.
Szirmay-Kalos, L., 2000. Monte-Carlo methods in global illumination. Vienna: Vienna University of Technology, Institute of Computer Graphics.
T
Toledo, G.E., Pelegrini, A.V., 2014. Estimating energy savings in artificial lighting provided by the use of a solar light pipe prototype. International Journal of Advances in Engineering and Technology, vol. 6, no. 6, p. 2391-2397.
Tregenza, P.R., 1999. Standard skies for maritime climates. Lighting Research and Technology, vol. 31, no. 3, p. 97-105.
U
Ustinov, E.A., 2006. Passive remote sensing of planetary atmospheres and retrievals of atmospheric macro- and microphysical parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 103, no. 1, p. 217-230.
V
Van de Hulst, H.C., 1980. Multiple light scattering. New York: Academic Press.
Vasilakopoulou, K., Synnefa, A., Kolokots, D., Karlessi, T., Santamouris, M., 2014. Performance prediction and design optimisation of an integrated light pipe and artificial lighting system. International Journal of Sustainable Energy, article in press. DOI:10.1080/14786451.2014.932281.
Vázquez-Moliní, D., Fernández-Balbuena, A.Á., García-Fernández, B., 2012. Natural lighting systems based on dielectric prismatic film. INTECH, p. 155-180.
Venturi, L., Wilson, M., Jacobs, A., Solomon, J., 2006. Light piping performance enhancement using a deflecting sheet. Lighting Research and Technology, vol. 38, no. 2, p. 167-180.
Vergara-Dominiguez, L., Garcia-Gomez, R., Figueiras-Vidal, A.R., Casar-Corredera, J.R., Casajus-Quiros, F.J., 1985. Automatic modelling and simulation of daily global solar radiation series. Solar Energy, vol. 35, no. 6, p. 483-189.
Volhejn, J., 2011. Světlovody v ploché i šikmé střeše (Light guides in flat and slope roof). Realizace staveb, vol. 6, no. 4, p. 36-39. (in Czech).
W
Wagh, M.D., 1976. Coupling between two cylindrical light pipes: a design. Applied Optics, vol. 15, no. 11, p. 2844 - 2845.
Wagh, M.D., Rao, B.V., 1976. Right angle bends in light pipes: analysis. Applied Optics, vol. 15, no. 5, p. 1331- 1333.
Walkenhorst, O., Luther, J., Reinhart, Ch., 2002. Dynamic annual daylight simulation based on one-hour and one-minute means of irradiance data. Solar Energy, vol. 72, no. 5, p. 385-395.
Ward, G.R., Shakespeare, R., 2003. Rendering with radiance: the art and science of lighting visualization. Space and Light. Davis, California.
Whitehead, L.A., 1998. Overview of hollow light guide technology and applications. Proc. of Daylighting 98 - Int. Conf. on Daylighting Technologies for Energy Efficiency in Buildings, p.197-204.
Whitehead, L.A., Nodwell, R.A., Curzon, F.L., 1982. New efficient light guide for interior illumination. Applied Optics, vol. 21, no. 15, p. 2755-2757.
Wittkopf, S.K., 2004. A method to construct virtual sky domes for use in standards CAD-based light simulation software. Architectural Science Review, vol. 47, no. 3, p. 275–286.
Wittkopf, S.K., Soon, L.K., 2007. Analysing sky luminance scans and predicting frequent sky patterns in Singapore. Lighting Research and Technology, vol. 39, no. 1, p. 31-51.
Wu, Y., Li, J., 2011. Analysis of energy saving effect of solar light pipe systems in Beijing Olympic buildings. Advanced Materials Research, vol. 452-453, p. 294-298.
Wu, Y., Li, J., Li, H., 2011. Testing and calculation of solar light pipes of USTB gymnasium. Advanced Materials Research, vol. 452-453, p. 138-141.
Wu, Y., Li, H., 2012. Experimental study on performance of top lighting solar light pipes in the meeting room in winter in Beijing. Applied Mechanics and Materials, vol. 178-181, p. 29-32.
Wu, Y.P., Ma, C.F., 2011. Experimental research on "direct" and "t" type solar light-vent pipe systems. Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, vol. 35, p. 148-153.
Wu, Y.P., Rendong, J., Zhang, W., Liu, L., Zou, D., 2009. Analysis of daylight performance of solar light pipes influenced by size and shape of sunlight captures. Proc. of SPIE - The International Society for Optical Engineering, vol. 7508, article no. 75081C.
Wu, Y., Wang, X., Chen, Z., Zhang, C., 2012. Experimental study on the influence of daylighting performance of solar light pipes by dusts and condensation. Advanced Materials Research, vol. 374-377, p. 1096-1099.
Wu, Y., Wang, X., Ma, C.F., 2008. Solar light pipe combined with photocatalysis to decompose formaldehyde under sunny conditions in summer in Beijing. Acta Optica Sinica, vol. 28, no. 12, p. 2408-2415.
Wu, Y., Yue, Z., 2012. Solar light-vent pipe systems: create good building luminous environment and indoor air quality. Advanced Materials Research, vol. 374-377, p. 639-642.
Wu, Y.P., Zhang, W.M., Ma, C.F., Lu, Y.W., Liu, L., 2010. Photocatalytic degradation of formaldehyde by diffuser of solar light pipe coated with nanometer titanium dioxide thin films. Science China-Technological Sciences, vol. 53, no. 1, p. 150-154.
X
Xu, J., Zong, D., Yin, Y., 2012. Applications of light guide lighting technology in tunnel lighting. Advanced Materials Research, vol. 461, p. 521-525.
Z
Żagan, W., 2005. Podstawy techniki świetlnej (Basics of illumination). Warszawa: OWPW. (in Polish).
Žára, J., Beneš, B., Felkel, P., 1998. Moderní počítačová grafika (Modern computer graphics). Praha: Computer Press. (in Czech).
Zastrow, A., Wittwer, V., 1986. Daylighting with mirror light pipes with fluorescent planar concentrators. Proc. of SPIE, vol. 692, Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology. San Diego: SPIE, p. 227-234.
Zazzini, P., Chella, F., Scarduzio, A., 2006. Numerical and experimental analysis of light pipes’ performances: comparison of the obtained results. PLEA2006 - The 23rd Conf. on Passive and Low Energy Architecture, Geneva.
Zhang, X., 2002. Daylighting performance of tubular solar light pipes: measurement, modelling and validation. PhD. Thesis, Edinburgh: Napier University.
Zhang, X., Muneer, T., 2000. A mathematical model for the performance of light-pipes. Lighting Research and Technology, vol. 32, p. 141-146.
Zhang, X., Muneer, T., 2002. A design guide for performance assessment of solar light-pipes. Lighting Research and Technology, vol. 34, p. 149-169.
Zhang, X., Muneer, T., Kubie, J., 2002. A design guide for performance assessment of solar light-pipes. Lighting Research and Technology, vol. 34, no. 2, p. 149-169.